Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In-situ enrichment of phosphopeptides on MALDI plates modified by ambient ion landing

Identifieur interne : 001A19 ( Main/Repository ); précédent : 001A18; suivant : 001A20

In-situ enrichment of phosphopeptides on MALDI plates modified by ambient ion landing

Auteurs : RBID : Pascal:13-0083299

Descripteurs français

English descriptors

Abstract

We report substantial in-situ enrichment of phosphopeptides in peptide mixtures using titanium and zirconium dioxide-coated matrix assisted laser desorption-ionization (MALDI) plates prepared by recently reported ambient ion landing deposition technique. The technique was able to modify four common materials currently used for MALDI targets (stainless steel, aluminum, indium-tin oxide glass and polymeric anchor chip). The structure of the deposited dioxide was investigated by electron microscopy, and different surfaces were compared and discussed in this study. Two standard proteins were used to test the enrichment capabilities of modified MALDI plates: casein and in-vitro phosphorylated trehalase. The enrichment of casein tryptic digest resulted in identification of 20 phosphopeptides (including miscleavages). Trehalase was used as a suitable model of larger protein that provided more complex peptide mixture after the trypsin digestion. All four possible phosphorylation sites in trehalase were identified and up to seven phosphopetides were found (including methionine oxidations and miscleavages). Two different mass spectrometers, MALDI-Fourier transform ion cyclotron resonance (FTICR) and MALDI-time of flight, were used to detect the phosphopeptides from modified MALDI plates after the enrichment procedure. It was observed that the desorption-ionization phenomena on the modified surfaces are not critically influenced by the parameters of the different MALDI ion sources (e.g. different pressure, different extraction voltages), and thus the presence of dioxide layer on the standard MALDI plate does not significantly interfere with the main MALDI processes. The detection of phosphopeptides after the enrichment could be done by both instruments. Desorption electrospray ionization coupled to the FTICR was also tested, but, unlike MALDI, it did not provide satisfactory results.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0083299

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">In-situ enrichment of phosphopeptides on MALDI plates modified by ambient ion landing</title>
<author>
<name sortKey="Krasny, Lukas" uniqKey="Krasny L">Lukas Krasny</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Microbiology of the ASCR, v.v.i., Videnska 1083</s1>
<s2>Prague 142 20</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>Prague 142 20</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Chemical Technology, Technická 5</s1>
<s2>Prague, 16628</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>Prague, 16628</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pompach, Petr" uniqKey="Pompach P">Petr Pompach</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Microbiology of the ASCR, v.v.i., Videnska 1083</s1>
<s2>Prague 142 20</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>Prague 142 20</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8</s1>
<s2>128 40 Prague</s2>
<s3>CZE</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>128 40 Prague</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Strohalm, Martin" uniqKey="Strohalm M">Martin Strohalm</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Microbiology of the ASCR, v.v.i., Videnska 1083</s1>
<s2>Prague 142 20</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>Prague 142 20</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Obsilova, Veronika" uniqKey="Obsilova V">Veronika Obsilova</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institute of Physiology of the ASCR, v.v.i., Videnska 1083</s1>
<s2>Prague 142 20</s2>
<s3>CZE</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>Prague 142 20</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Strnadova, Marcela" uniqKey="Strnadova M">Marcela Strnadova</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Microbiology of the ASCR, v.v.i., Videnska 1083</s1>
<s2>Prague 142 20</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>Prague 142 20</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Novak, Petr" uniqKey="Novak P">Petr Novak</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Microbiology of the ASCR, v.v.i., Videnska 1083</s1>
<s2>Prague 142 20</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>Prague 142 20</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8</s1>
<s2>128 40 Prague</s2>
<s3>CZE</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>128 40 Prague</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Volny, Michael" uniqKey="Volny M">Michael Volny</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Microbiology of the ASCR, v.v.i., Videnska 1083</s1>
<s2>Prague 142 20</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>Prague 142 20</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Chemistry, University of Washington</s1>
<s2>Seattle, Washington, 98195-1700</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Seattle, Washington, 98195-1700</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0083299</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0083299 INIST</idno>
<idno type="RBID">Pascal:13-0083299</idno>
<idno type="wicri:Area/Main/Corpus">001266</idno>
<idno type="wicri:Area/Main/Repository">001A19</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1076-5174</idno>
<title level="j" type="abbreviated">J. mass spectrom.</title>
<title level="j" type="main">Journal of mass spectrometry</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Casein</term>
<term>Chemical analysis</term>
<term>Chemical enrichment</term>
<term>Fourier transformation</term>
<term>In situ</term>
<term>Indium tin oxide electrode</term>
<term>Ion cyclotron resonance spectrometry</term>
<term>Mass spectrometry</term>
<term>Matrix assisted laser desorption ionization</term>
<term>Milk protein</term>
<term>Optically transparent electrode</term>
<term>Peptides</term>
<term>Phosphopeptide</term>
<term>Phosphoproteins</term>
<term>Surface properties</term>
<term>Tandem mass spectrometry</term>
<term>Time of flight method</term>
<term>Trace analysis</term>
<term>Whey protein</term>
<term>α,α-Trehalase</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>In situ</term>
<term>Enrichissement chimique</term>
<term>Phosphopeptide</term>
<term>MALDI</term>
<term>Caséine</term>
<term>α,α-Trehalase</term>
<term>Electrode ITO</term>
<term>Propriété surface</term>
<term>Analyse trace</term>
<term>Peptide</term>
<term>Spectrométrie masse</term>
<term>Méthode temps vol</term>
<term>Transformation Fourier</term>
<term>Spectrométrie cyclotronique ionique</term>
<term>Phosphoprotéine</term>
<term>Protéine lactosérum</term>
<term>Protéine lait</term>
<term>Analyse chimique</term>
<term>Electrode optiquement transparente</term>
<term>FTICR</term>
<term>Spectrométrie masse tandem</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report substantial in-situ enrichment of phosphopeptides in peptide mixtures using titanium and zirconium dioxide-coated matrix assisted laser desorption-ionization (MALDI) plates prepared by recently reported ambient ion landing deposition technique. The technique was able to modify four common materials currently used for MALDI targets (stainless steel, aluminum, indium-tin oxide glass and polymeric anchor chip). The structure of the deposited dioxide was investigated by electron microscopy, and different surfaces were compared and discussed in this study. Two standard proteins were used to test the enrichment capabilities of modified MALDI plates: casein and in-vitro phosphorylated trehalase. The enrichment of casein tryptic digest resulted in identification of 20 phosphopeptides (including miscleavages). Trehalase was used as a suitable model of larger protein that provided more complex peptide mixture after the trypsin digestion. All four possible phosphorylation sites in trehalase were identified and up to seven phosphopetides were found (including methionine oxidations and miscleavages). Two different mass spectrometers, MALDI-Fourier transform ion cyclotron resonance (FTICR) and MALDI-time of flight, were used to detect the phosphopeptides from modified MALDI plates after the enrichment procedure. It was observed that the desorption-ionization phenomena on the modified surfaces are not critically influenced by the parameters of the different MALDI ion sources (e.g. different pressure, different extraction voltages), and thus the presence of dioxide layer on the standard MALDI plate does not significantly interfere with the main MALDI processes. The detection of phosphopeptides after the enrichment could be done by both instruments. Desorption electrospray ionization coupled to the FTICR was also tested, but, unlike MALDI, it did not provide satisfactory results.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1076-5174</s0>
</fA01>
<fA03 i2="1">
<s0>J. mass spectrom.</s0>
</fA03>
<fA05>
<s2>47</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>In-situ enrichment of phosphopeptides on MALDI plates modified by ambient ion landing</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KRASNY (Lukas)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>POMPACH (Petr)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>STROHALM (Martin)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>OBSILOVA (Veronika)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>STRNADOVA (Marcela)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>NOVAK (Petr)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>VOLNY (Michael)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Microbiology of the ASCR, v.v.i., Videnska 1083</s1>
<s2>Prague 142 20</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Chemical Technology, Technická 5</s1>
<s2>Prague, 16628</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8</s1>
<s2>128 40 Prague</s2>
<s3>CZE</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Institute of Physiology of the ASCR, v.v.i., Videnska 1083</s1>
<s2>Prague 142 20</s2>
<s3>CZE</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Chemistry, University of Washington</s1>
<s2>Seattle, Washington, 98195-1700</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>1294-1302</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22950</s2>
<s5>354000505350050040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>69 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0083299</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of mass spectrometry</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report substantial in-situ enrichment of phosphopeptides in peptide mixtures using titanium and zirconium dioxide-coated matrix assisted laser desorption-ionization (MALDI) plates prepared by recently reported ambient ion landing deposition technique. The technique was able to modify four common materials currently used for MALDI targets (stainless steel, aluminum, indium-tin oxide glass and polymeric anchor chip). The structure of the deposited dioxide was investigated by electron microscopy, and different surfaces were compared and discussed in this study. Two standard proteins were used to test the enrichment capabilities of modified MALDI plates: casein and in-vitro phosphorylated trehalase. The enrichment of casein tryptic digest resulted in identification of 20 phosphopeptides (including miscleavages). Trehalase was used as a suitable model of larger protein that provided more complex peptide mixture after the trypsin digestion. All four possible phosphorylation sites in trehalase were identified and up to seven phosphopetides were found (including methionine oxidations and miscleavages). Two different mass spectrometers, MALDI-Fourier transform ion cyclotron resonance (FTICR) and MALDI-time of flight, were used to detect the phosphopeptides from modified MALDI plates after the enrichment procedure. It was observed that the desorption-ionization phenomena on the modified surfaces are not critically influenced by the parameters of the different MALDI ion sources (e.g. different pressure, different extraction voltages), and thus the presence of dioxide layer on the standard MALDI plate does not significantly interfere with the main MALDI processes. The detection of phosphopeptides after the enrichment could be done by both instruments. Desorption electrospray ionization coupled to the FTICR was also tested, but, unlike MALDI, it did not provide satisfactory results.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A02D02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>In situ</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>In situ</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>In situ</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Enrichissement chimique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Chemical enrichment</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Enriquecimiento químico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Phosphopeptide</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Phosphopeptide</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Fosfopéptido</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>MALDI</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Matrix assisted laser desorption ionization</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>MALDI</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Caséine</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Casein</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Caseina</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>α,α-Trehalase</s0>
<s2>FE</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>α,α-Trehalase</s0>
<s2>FE</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>α,α-Trehalase</s0>
<s2>FE</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Electrode ITO</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Indium tin oxide electrode</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Electrodo ITO</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Propriété surface</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Surface properties</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Propiedad superficie</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Analyse trace</s0>
<s5>32</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Trace analysis</s0>
<s5>32</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Análisis huella</s0>
<s5>32</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Peptide</s0>
<s5>33</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Peptides</s0>
<s5>33</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Péptido</s0>
<s5>33</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Spectrométrie masse</s0>
<s5>34</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Mass spectrometry</s0>
<s5>34</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Espectrometría masa</s0>
<s5>34</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Méthode temps vol</s0>
<s5>35</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Time of flight method</s0>
<s5>35</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Método tiempo vuelo</s0>
<s5>35</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Transformation Fourier</s0>
<s5>36</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Fourier transformation</s0>
<s5>36</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Transformación Fourier</s0>
<s5>36</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Spectrométrie cyclotronique ionique</s0>
<s5>37</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Ion cyclotron resonance spectrometry</s0>
<s5>37</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Espectrometría ciclotrónica iónica</s0>
<s5>37</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Phosphoprotéine</s0>
<s5>38</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Phosphoproteins</s0>
<s5>38</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Fosfoproteina</s0>
<s5>38</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Protéine lactosérum</s0>
<s5>39</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Whey protein</s0>
<s5>39</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Proteína lactosero</s0>
<s5>39</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Protéine lait</s0>
<s5>40</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Milk protein</s0>
<s5>40</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Proteína leche</s0>
<s5>40</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Analyse chimique</s0>
<s5>41</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Chemical analysis</s0>
<s5>41</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Análisis químico</s0>
<s5>41</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Electrode optiquement transparente</s0>
<s5>42</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Optically transparent electrode</s0>
<s5>42</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Electrodo ópticamente transparente</s0>
<s5>42</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>FTICR</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Spectrométrie masse tandem</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Tandem mass spectrometry</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Espectrometría masa en tándem</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Glycosidases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Glycosidases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Glycosidases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Glycosylases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Glycosylases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Glycosylases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Hydrolases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Hydrolases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Hydrolases</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Enzyme</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Enzyme</s0>
<s2>FE</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Enzima</s0>
<s2>FE</s2>
</fC07>
<fN21>
<s1>056</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A19 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001A19 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0083299
   |texte=   In-situ enrichment of phosphopeptides on MALDI plates modified by ambient ion landing
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024